A comparison of latent class, K-means, and K-median methods for clustering dichotomous data.
نویسندگان
چکیده
منابع مشابه
Clustering Educational Digital Library Usage Data: A Comparison of Latent Class Analysis and K-Means Algorithms
This article examines clustering as an educational data mining method. In particular, two clustering algorithms, the widely used K-means and the model-based Latent Class Analysis, are compared, using usage data from an educational digital library service, the Instructional Architect (IA.usu.edu). Using a multi-faceted approach and multiple data sources, three types of comparisons of resulting c...
متن کاملPersistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm
Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...
متن کاملDistributed k-Means and k-Median Clustering on General Topologies
This paper provides new algorithms for distributed clustering for two popular center-based objectives, k-median and k-means. These algorithms have provable guarantees and improve communication complexity over existing approaches. Following a classic approach in clustering by [13], we reduce the problem of finding a clustering with low cost to the problem of finding a coreset of small size. We p...
متن کاملA Hybrid Data Clustering Algorithm Using Modified Krill Herd Algorithm and K-MEANS
Data clustering is the process of partitioning a set of data objects into meaning clusters or groups. Due to the vast usage of clustering algorithms in many fields, a lot of research is still going on to find the best and efficient clustering algorithm. K-means is simple and easy to implement, but it suffers from initialization of cluster center and hence trapped in local optimum. In this paper...
متن کاملGraph-Based k-Means Clustering: A Comparison of the Set Median versus the Generalized Median Graph
In this paper we propose the application of the generalized median graph in a graph-based k -means clustering algorithm. In the graph-based k -means algorithm, the centers of the clusters have been traditionally represented using the set median graph. We propose an approximate method for the generalized median graph computation that allows to use it to represent the centers of the clusters. Exp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Psychological Methods
سال: 2017
ISSN: 1939-1463,1082-989X
DOI: 10.1037/met0000095